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Abstract

The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-
parameter model that simulates streamflow, springflow, groundwater level, solute trans-
port, or cave drip for a measurement point in response to a system input of precipita-
tion, recharge, or solute injection. The RRAWFLOW open-source code is written in the5

R language and is included in the Supplement to this article along with an example
model of springflow. RRAWFLOW includes a time-series process to estimate recharge
from precipitation and simulates the response to recharge by convolution; i.e., the unit
hydrograph approach. Gamma functions are used for estimation of parametric impulse-
response functions (IRFs); a combination of two gamma functions results in a double-10

peaked IRF. A spline fit to a set of control points is introduced as a new method for
estimation of nonparametric IRFs. Other options include the use of user-defined IRFs
and different methods to simulate time-variant systems. For many applications, lumped
models simulate the system response with equal accuracy to that of distributed mod-
els, but moreover, the ease of model construction and calibration of lumped models15

makes them a good choice for many applications. RRAWFLOW provides professional
hydrologists and students with an accessible and versatile tool for lumped-parameter
modeling.

1 Introduction

Hydrological models, commonly referred to as a “lumped-parameter” or “lumped” mod-20

els, generally have a small number of parameters, each representing a property of
the entire hydrological system; conceptually, many physical processes are lumped
into a few parameters. The Rainfall-Response Aquifer and Watershed Flow Model
(RRAWFLOW) is one such model that is partially based on unit-hydrograph theory
(Nash, 1959). RRAWFLOW simulates a time-series record for a measurement point25

of streamflow, springflow, groundwater level, solute transport, or cave drip in response
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to a system input of precipitation, recharge, or solute injection. A preliminary version
of RRAWFLOW was developed by Long and Mahler (2013) and used to classify karst
aquifers and characterize time-variant systems. This preliminary version also was used
by Symtad et al. (2014) to simulate future scenarios of streamflow and groundwater
level in a cave in Wind Cave National Park, United States and by the U.S. Geological5

Survey to simulate future scenarios of springflow and groundwater level in two karst
aquifers (http://txpub.usgs.gov/crsp1/).

I present a new version of RRAWFLOW with additional options that include (1) the
gamma function for parametric impulse-response functions (IRFs), (2) a spline curve
or straight-line segments fit through a set of control points for nonparametric IRFs,10

(3) any user-defined IRF, and (4) a new option for time-variant systems that uses a
continuously changing IRF scale. To my knowledge, the spline-curve method previously
has not been used for the IRF. Additional options for time-variant systems also are
available in RRAWFLOW. The open-source code is written in the R language (http:
//www.r-project.org/index.html) and is included in the Supplement to this article.15

In contrast to lumped models, distributed models discretize the system into small
compartments or cells, each of which has several parameters defined. All hydrologi-
cal models, however, are lumped to some degree. Models that frequently are consid-
ered physically based simulate numerous small-scale physics by lumping these pro-
cesses into simplified mathematical forms (Beven, 1989). The use of the term “phys-20

ically based” to describe any hydrological model, therefore, should be discouraged
(Beven and Young, 2013). Both distributed and lumped models, however, have com-
ponents that can represent different hydrological processes that can be interpreted in
physically meaningful ways (Beven and Young, 2013). For example, the IRF estimated
in many lumped models represents the physical response to an impulse into the system25

and provides mechanistic insights into that system, including the peak response time
and magnitude and the hydrological memory of the system (von Asmuth and Knotters,
2004; Beven and Young, 2013; Young, 2013). The IRF could be measured directly at
the outflow point (e.g., a spring) if a short, intense recharge event follows a long, dry
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period. Most commonly, however, the outflow, or system response, results from a se-
ries of superposed responses to repeating recharge events, and the lumped model is
used to estimate the IRF iteratively and to simulate the system response.

In a comparison of lumped models to distributed models, Reed et al. (2004) con-
cluded that lumped models had better overall performance than distributed models but5

also cited several other studies indicating that distributed or semi-distributed models
may or may not provide improvement over lumped models. In another comparison sim-
ilar to that of Reed et al. (2004), Smith et al. (2013) concluded that distributed models
provided improvements over lumped models in 12–24 % of the cases tested, depend-
ing on the criteria of evaluation. The mixed results of these comparisons indicate that10

lumped models are a good choice when the objectives do not require a distributed
model.

A major advantage of a lumped model is its ease of construction and calibration be-
cause of the small number of parameters to estimate and because there is no need to
assemble large datasets representing the physical properties of the system. Lumped15

models are particularly applicable to karst aquifers, where the geometry of the conduit
network frequently is unknown. Lumped models provide an efficient means to simu-
late the response to possible future changes in the system input (e.g., precipitation).
The primary advantage of distributed models is to simulate the response to possi-
ble changes within the system, such as urban development or increased groundwater20

pumping, for example. The choice to use a lumped or distributed model, therefore, de-
pends on a study’s objectives and available resources; a lumped model likely is the
better choice if it meets the study’s objectives.

Time-variant and time-invariant systems were described by Jenkins and
Watts (1968). For example, Larocque et al. (1998) described high-flow periods ex-25

hibiting distinctly different response characteristics from low-flow periods. RRAWFLOW
has options to simulate time-variant systems that generally are not available in
distributed watershed models (e.g., PRMS; http://wwwbrr.cr.usgs.gov/projects/SW_
MoWS/PRMS.html). If a distributed model is required for a specific study, RRAWFLOW
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might be useful as an exploratory tool to analyze the system’s sensitivity to time-
variant response characteristics. RRAWFLOW also could be a useful educational tool
for hands-on instruction of some of the basic principles in hydrology. Herein, one
springflow site and one groundwater-level site are used in several example applica-
tions that demonstrate model options and calibration and validation procedures. Input,5

output, and calibration files are available in the Supplement for one of these examples.

2 The model

Effective precipitation for a watershed is the amount of precipitation that results in
streamflow exiting the watershed. This consists of infiltration to groundwater below the
root zone that reemerges as streamflow, shallow groundwater interflow, and overland10

runoff. Processes that apply to effective precipitation for watershed modeling also apply
to infiltration recharge to groundwater that causes a response in springflow or ground-
water level, except that overland runoff is not included in this case. In RRAWFLOW,
the term “recharge” is used for both watershed modeling and groundwater modeling.
A daily time step is suitable for most applications. Time steps shorter than one day15

can be used for high-resolution simulations, but time steps longer than one day should
not be used when estimating recharge with Eqs. (1)–(4). The response in springflow
or groundwater level to recharge is simulated by the convolution integral (Jenkins and
Watts, 1968; Smith, 2003). RRAWFLOW is independent of specific units for flow, wa-
ter level, or solute concentration, and the user should maintain unit consistency. Air20

temperature is always in ◦C.

2.1 Precipitation recharge

To estimate recharge from direct precipitation, a daily soil-moisture index s [unitless]
is estimated. Quantitatively, s is the daily fraction of precipitation that infiltrates and
becomes recharge. To account for the antecedent effects of rainfall on soil moisture, the25
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past daily-rainfall record is weighted by a backward-in-time exponential decay function
(Jakeman and Hornberger, 1993):

si = cri +
(

1− κ−1
i

)
si−1 (1)

= c
[
ri +

(
1− κ−1

i

)
ri−1 +

(
1− κ−1

i

)2
ri−2 + . . .

]
i = 0,1, . . .,N 0 ≥ s ≥ 1,5

where c [L−1] is a coefficient that limits s to the range 0–1; κ [unitless] adjusts the
effect of antecedent rainfall and is related to evapotranspiration; r is total daily rainfall
[L]; and i is the time step, typically in days. In RRAWFLOW, this method is option 1 for
system input (Table 1). For watershed modeling, the value of c can be set to satisfy10

the assumption that the total recharge volume within a watershed is equal to the total
outflow volume for the calibration and validation periods. This assumption neglects the
net change in total watershed storage during this period, which is assumed to be small
in comparison to the total inflow or outflow for the same period. Also, this assump-
tion does not apply if recharge to the watershed exits the watershed through deep15

groundwater and bypasses the stream outlet, which is possible in karst watersheds for
example. Recent rainfall has the largest effect on s in Eq. (1), whereas earlier rainfall
has the least effect.

The effect of changing air temperatures on daily evapotranspiration is accounted for
by (Jakeman and Hornberger, 1993):20

κi = αexp[(20− Ti )f ] f > 0, (2)

where α [unitless] is a scaling coefficient; T [◦C] is daily mean air temperature at the
land surface; and f is a temperature modulation factor [◦C−1]. As air temperature T
decreases, s in Eq. (1) increases with sufficient past rainfall. RRAWFLOW can be exe-25

cuted without air-temperature data if unavailable (air-temperature option 2 in Table 1).
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Daily recharge ui [L] is calculated as the fraction s of daily precipitation by

ui = risi . (3)

An additional function of parameters c and κ is to adjust for differences in the runoff
effects between watershed and groundwater modeling. Also, for groundwater applica-5

tions, c in Eq. (1) cannot be determined empirically if the recharge area that affects a
spring or well is not precisely defined. Therefore, for groundwater applications, c can
be set to a value that results in a predefined maximum s value or estimated mean
recharge rate, or c can be optimized through model calibration. In practice, the error
in the estimation of c is compensated by an adjustment in the IRF area during model10

calibration; e.g., an overestimation of c by 10 % would result in a 10 % underestimation
in IRF area.

Depending on the values of c and κ, the value of s can incorrectly have values < 0
or > 1; when this occurs, RRAWFLOW sets s to 0 or 1, respectively. This is most likely
to occur early in the calibration process when parameter values might be far from op-15

timum, and forcing the constraint 0 ≥ s ≥ 1 assists in the efficiency of the calibration
process. To ensure that the range of s is appropriate for the model area, this parameter
should always be plotted after model calibration; i.e., s should be a physically plausi-
ble function that fluctuates in response to local precipitation and air temperature. For
example, in humid climates with high annual precipitation, s might frequently have a20

value > 0.9, which is less likely in dry climates.
For cold climates where winter snowfall is common, a method proposed by Long

and Maher (2013) is applied. To determine the form of precipitation for each day, an air
temperature threshold value Ts is set, below which precipitation is assumed to occur as
snow (typically Ts = 0 ◦C). To determine days when melting occurs, a melting threshold25

value Tm is set. If daily snow-depth data are available, Tm can be determined empirically
as the mean air temperature for days when snow depth decreases to zero from a
previous day with a snow depth greater than zero. Long and Mahler (2013) determined
that Tm = 9 ◦C for a study area in central North America. Sublimation is accounted for
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by a sublimation fraction Sf . Snow precipitation is summed for each series of snow-
precipitation days occurring prior to each snowmelt day by

pm = (1−Sf)
N∑
i=1

pi Ti < Ts, (4)

where pm is the accumulated snow precipitation that is assumed to melt when Ti > Tm,5

Sf is the sublimation fraction [unitless], pi is the daily snow precipitation in height of
water, and N is the number of snow precipitation days occurring between melt days.
Prior to calculating Eq. (1), pm is added to the daily rainfall record for the day following
a snowmelt day because snowmelt is assumed to have the same effect as rainfall on
the value of s.10

2.2 Other recharge options

Recharge estimated outside of RRAWFLOW can be used as model input, in which case
Eqs. (1)–(4) are not used. For example, this applies to precipitation recharge estimated
by a daily soil-water-balance model (e.g., Westenbroek et al., 2010) or sinking-stream
recharge in karst aquifers that can be estimated by methods such as those described15

by Hortness and Driscoll (1998). This is system-input option 2 (Table 1).

2.3 Solute transport

RRAWFLOW can simulate transport of a solute, similarly to the approach of
Maloszewski and Zuber (1982), in which case Eqs. (1)–(4) are not used. In this case,
the system input is the solute concentration, and a constant recharge rate is assumed.20

The response in solute concentration at the outlet of a system is simulated by the con-
volution integral (as described in the following section), which temporally disperses a
system input of a solute. This is system-input option 3 (Table 1).
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2.4 Convolution

Convolution is a time-series operation (Jenkins and Watts, 1968; Smith, 2003) com-
monly used in non-distributed hydrological models to simulate streamflow, springflow,
or groundwater level in response to recharge (e.g., Nash, 1959; Dooge, 1973; Dreiss,
1989; Olsthoorn, 2008). The use of convolution in hydrology has its origins in unit-5

hydrograph theory for watershed runoff modeling (Nash, 1959; Dooge, 1973). Convo-
lution has been used to simulate solute transport of tracers (e.g., Maloszewski and
Zuber, 1982; Long and Putnam, 2004; Jurgens et al., 2012), groundwater response to
recharge from a sinking stream (Long and Derickson, 1999), flow through karst con-
duits (Cornaton and Perrochet, 2002), and cave drip (Long and Mahler, 2013). The use10

of convolution in modeling also has been described as a linear-reservoir model and a
transfer-function model (e.g., Nash, 1959; Young, 2013; von Asmuth et al., 2002).

Mathematically, convolution is the integration of an input function (e.g., recharge)
with an IRF that describes the system response to a unit impulse of the input function:

y(t) =

∞∫
τ=0

h(t− τ)u(τ)dτ (5)15

where y(t) is the system response, or output; h(t− τ) is the IRF; u(τ) is the input, or
forcing, function; τ and t are time variables corresponding to system input and output,
respectively (Jenkins and Watts, 1968; Dooge, 1973; Olsthoorn, 2008). The quantity
t−τ represents the delay time from impulse to response, and the IRF represents a dis-
tribution of these delay times. In RRAWFLOW, the input function u(τ) can be recharge20

or input of a solute. The system response y(t) can be streamflow exiting a watershed,
springflow from a groundwater system, groundwater level, or solute concentration at
an outlet. Physically, the IRF is the system response y(t) per unit impulse of u(τ) and
also can be described as the response produced by a system when the input is a delta
function (Smith, 2003). Conceptually, convolution is the superposition of a series of25
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IRFs that are initiated at the time of each impulse of u(τ) and are scaled proportionally
by the magnitude of the corresponding impulse (Fig. 1).

For uniform time steps, the discrete form of Eq. (5) is

yi =
i∑

j=0

hi−juj +ϕi i , j = 0,1, . . .,N, (6)

5

where hi−j is the IRF; uj is the input, or forcing, function; and j and i are time-step
indices corresponding to system input and output, respectively; N is the number of
time steps in the output record; and ϕ represents the errors resulting from measure-
ment inaccuracy, sampling interval, or simplifying model assumptions. For simulation
of groundwater levels, a datum h0 at which hydraulic head equals zero must be estab-10

lished. Conceptually, h0 is the level to which hydraulic head would converge if the local
recharge was eliminated. Local recharge is assumed to be the only forcing that results
in hydraulic-head fluctuation or that causes hydraulic head to rise above h0.

2.5 Impulse-response function (IRF)

The IRF also has been described by other terms, including instantaneous unit hydro-15

graph, transfer function, and kernel (e.g., Nash, 1959; Dreiss, 1989; Berendrecht et al.,
2003; Smith, 2003; Jukić and Denić-Jukić, 2006). The IRF of a hydrologic system can
be approximated by a parametric function, where its shape is defined by one or more
parameters, or a nonparametric function that is not constrained to common curve types.
To compare convolution with frequency analysis, the frequency spectrum is a function20

that characterizes a single time series at a glance, whereas the IRF is a function that
characterizes the relation between system input and output.

2.5.1 Parametric IRFs

Parametric functions that have been used to approximate the IRF for hydrologic sys-
tems include exponential, lognormal, and gamma functions (Nash, 1959; Besbes25
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and de Marsily, 1984; Jakeman and Hornberger, 1993; von Asmuth et al., 2002;
Berendrecht et al., 2003; von Asmuth and Knotters, 2004; Long, 2009; Long and
Mahler, 2013). The gamma function is equivalent to the Pearson type III function: the
three parameters of the Pearson type III function can be combined into the two pa-
rameters of the gamma function (Haan, 2002). Estimation of parametric IRFs generally5

consists of model-calibration techniques to optimize the parameters with the aim of
minimizing the difference between the observed and simulated system response; i.e.,
fitting the model. The parametric functions previously described (other than Pearson
type III) have one or two of these fitting parameters. As the number of fitting parame-
ters increases, the risk of over-fitting the model also increases; i.e., fitting the errors ϕ10

in Eq. (6).
For a parametric approximation of the IRF, RRAWFLOW uses the gamma function:

γ(t) =
ληtη−1e−λt

Γ(η)
λ,η > 0, (7)

Γ(η) =

∞∫
t=0

tη−1e−tdt, (8)

15

where λ and η are unitless shape parameters, and the mean and variance are η/λ and
η/λ2, respectively. Equation (8) is approximated in RRAWFLOW by the discrete form

Γ(η) = ∆t
N∑

t=t0

tη−1e−t, (9)

where t is time centered on each discrete time step; t0 and N are time centered on the20

initial and final time steps, respectively; and ∆t is the time step duration. The gamma
function can produce a variety of shapes, including exponential (η = 1), reverse-J
(η< 1), and positively skewed shapes with a peak at t = (η−1)/λ (Haan, 2002; Fig. 2).
The gamma function can produce nearly identical shapes to those of the lognormal
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function when η> 1, and therefore, can produce nearly all possible shapes of the ex-
ponential and lognormal functions combined when η ≥ 1, plus additional shapes when
η< 1. The RRAWFLOW option to use parametric IRFs is specified as IRF type 1 (Ta-
ble 1).

The gamma function (Eq. 7), which has an area under its curve of unity, requires the5

additional scaling coefficient ε for use as the IRF in many hydrologic applications:

h(t) = εγ(t), (10)

where ε [unitless] compensates for hydrologic systems that do not have a one-to-one
relation between system input and output (Olsthoorn, 2008). For example, if (1) the10

system input u(τ) is in cubic meters per day of recharge, (2) the system response y(t)
is springflow with the same units, and (3) 100 % of this recharge emerges as springflow
with nothing else contributing to springflow, then ε would be set to unity. For most other
hydrologic applications, ε would not equal unity. Similarly, if 100 % of a solute entering
the system does not exit the system at the observation point, then the area under the15

IRF should be less than unity (ε< 1). Maloszewski and Zuber (1982) simulated solute
transport with IRFs that were approximated by the exponential or the dispersion-model
functions. The gamma function has a similar shape to that of the dispersion-model
function and could be used as an approximation of the dispersion-model function, or
the exact dispersion-model function can be provided to RRAWFLOW as a user-defined20

IRF.
RRAWFLOW allows the use of as many as two superposed gamma functions to

produce additional IRF shapes (Fig. 3), herein referred to as a double-gamma IRF.
Approaches similar to this have been used to represent the components of quick flow
and slow flow in watershed modeling (Jakeman and Hornberger, 1993) and for conduit25

and diffuse flow in karst aquifers (Pinault et al., 2001; Long, 2009; Long and Mahler,
2013). In these examples, each parametric function represents one of two flow com-
ponents. The use of a double-gamma IRF also might be useful when a single function
cannot produce the necessary IRF approximation (e.g., an extra-long tail). The scaling
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coefficient ε can be set to different values for the two gamma functions; e.g., to allow
for a larger component of slow flow than quick flow.

2.5.2 Nonparametric IRFs

The process of determining an unknown IRF from observed system input and out-
put data is known as deconvolution (e.g., Neuman and de Marsily, 1976). To define5

a nonparametric IRF, an ordinate value is defined for each time step, and any shape
desired is possible. Deconvolution methods include Fourier harmonic time-series anal-
ysis (Blank et al., 1971; Delleur and Rao, 1971), linear programming (Neuman and de
Marsily, 1976), and time-moment analysis (Dreiss, 1989). Estimations of nonparamet-
ric IRFs by model calibration include those described by Pinault et al. (2001), Jukić and10

Denić-Jukić (2006), and Long and Mahler (2013). A potential problem with nonparamet-
ric IRFs is that hundreds or even thousands of IRF ordinates may be needed to define
the IRF, depending on the IRF length and time step. Optimization of each individual
ordinate would result in a mathematically underconstrained and over-fit model. An ex-
treme example of over-fitting is to determine the IRF by means of deconvolution in the15

frequency domain (Smith, 2003) that results in a numerically perfect model fit but also
an IRF that commonly is highly oscillatory and cannot be explained physically (Blank
et al., 1971; and Delleur and Rao, 1971) because the errors ϕ (Eq. 6) are included in
the fitting process. Further, an over-fitted model results in a poor model fit when tested
on a conditional validation period that was sequestered from the fitting process. Pin-20

ault et al. (2001), Jukić and Denić-Jukić (2006), and Ladouche et al. (2014) described
different methods to constrain the nonparametric IRF and reduce the number of fitting
parameters.

The method proposed herein uses a small number of ordinates to define a smoothly
shaped nonparametric IRF: ordinates of the IRF are defined at spaced intervals (IRF25

control points), and a spline curve is fit through these points (Fig. 4) (IRF type 2, Ta-
ble 1). Another option is to apply straight-line segments connecting the control points
(IRF type 3, Table 1). Similar to parametric IRFs, these two nonparametric options are
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convenient for the estimation of the IRF through model calibration and conditional val-
idation because of the ability to control the number of fitting ordinates. If a model is
suspected of having been over-fit, the number of control points should be reduced;
this consists of increasing the control-point intervals, resulting in a smoother shape, or
by reducing the tail length by setting posterior control points to zero. Another option5

allows a predefined IRF to be supplied to RRAWFLOW if the IRF is determined by
some other method (IRF type 4, Table 1). The scaling coefficient ε is not necessary for
nonparametric IRFs because the area is defined by the ordinate values.

2.5.3 System linearity

Estimated recharge (Eqs. 1–4) is a nonlinear process, where the daily fraction of pre-10

cipitation varies with antecedent soil-moisture conditions. Convolution (Eq. 5), which
simulates the system response to recharge, is a linear process (Jenkins and Watts,
1968; Dooge, 1973); this is consistent with Jakeman and Hornberger (1993), who de-
scribed the response of streamflow to recharge as predominantly a linear process for
a variety of watersheds of differing size.15

A linear system can be either time variant or time invariant, depending on whether or
not the IRF changes with time (Jenkins and Watts, 1968). Most commonly, a time-
invariant (i.e., static) IRF is assumed in hydrological convolution models (e.g., von
Asmuth et al., 2002; Denić-Jukić and Jukić, 2003). In many hydrological systems, how-
ever, the IRF changes with changing hydrological conditions, resulting in a change20

in the flow system. For example, an increase in groundwater hydraulic gradient gen-
erally results in an increase in groundwater velocity. Fluctuating groundwater levels
might saturate or desaturate different parts of the aquifer having different hydraulic-
conductivity values or, in karst aquifers, different conduit or fracture networks. Exam-
ples of time-variant IRFs for karst applications include Pinault et al. (2001), Jukić and25

Denić-Jukić (2006), and Long and Mahler (2013).
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2.5.4 Time variance

RRAWFLOW has three options for time variance in convolution (Table 1). In time-
variance (TV) option 1, the IRF is time invariant, or static. TV option 2 applies a time-
variant IRF, similarly to the method proposed by Long and Mahler (2013), which uses a
minimal number of fitting parameters but also represents the dominant transient char-5

acteristics of the system. In this method, the system input record is separated into
climatically wet or dry periods; e.g., months or years for which the mean precipitation
is either above or below the long-term mean, respectively. One IRF represents all of
the wet periods, and the other represents all of the dry periods. This is applicable when
different altitudes of the groundwater table result in different hydraulic gradients (e.g.,10

toward a stream) or the saturation of different subterranean features with different hy-
draulic characteristics. Larocque et al. (1998), for example, observed that high-flow
and low-flow periods could be identified by distinct hydraulic characteristics for a karst
aquifer in France.

All of the parametric and nonparametric IRF-type options previously described can15

be used in TV option 2 (Table 1). An advantage of this method is that both the size
and shape of the IRF can change, while the fitting parameters are kept to a mini-
mum because IRFs are not defined continuously but rather for two different periods
only. A potential disadvantage of this method is that the IRF changes abruptly between
wet and dry periods; however, this was not a detrimental factor for several models in20

which this method was applied (Long and Mahler, 2013). Also, the superposition of
many responses applied in convolution results in smooth transitions in the simulated
response between wet and dry periods, even with different IRFs for the two periods.
Jukić and Denić-Jukić (2006) proposed a similar time-variant approach, where three
different IRFs each were applied to one of three different hydrological periods deter-25

mined by an index of antecedent recharge.
Pinault et al. (2001) varied the IRF’s vertical scale continuously with hydraulic

head. However, because hydraulic head also is used for model calibration, this
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approach cannot be used to simulate periods without observed system-response data;
e.g., future periods that might be simulated with climate projections. TV option 3 in
RRAWFLOW (Table 1) is similar to the approach of Pinault et al. (2001), except that
the IRF scale varies according to the input for convolution u(τ) (e.g. recharge), and the
variable β is inserted into Eq. (6), resulting in5

yi = ∆t
i∑

j=0

βjhi−juj +φi i = 0,1, . . .,N (11)

βj =mxj m 6= 0 (12)

where x is the moving average of u(τ) that is scaled to range from 0 to 1, and m
determines the range of β. A moving average of u(τ) is used so that the IRF transitions10

smoothly. Generally, β is assumed to vary directly with x (m> 0). Advantages of this
method are that it requires fewer fitting parameters than TV option 2 and the IRF does
not change abruptly; the disadvantage is that only the vertical scale of the IRF changes,
whereas the shape is static. All of the parametric and nonparametric IRF-type options
previously described can be used in this option. TV option 3 has longer run times than15

TV options 1 or 2 because of the additional computation required, mainly within the
convolution loop.

For time-invariant systems, the cross-correlation function (CCF) has the same shape
as the IRF but only if the input to the convolution process is completely random
(Jenkins and Watts, 1968). If the convolution input has a strong autocorrelation, typi-20

cal of recharge in hydrological systems, then there is large error in using the CCF to
estimate the IRF (Jenkins and Watts, 1968; Bailly-Comte et al., 2011) and therefore
should be avoided.

2.6 Model outputs

Model outputs consist of time series for simulated system response y(t), the dry-period25

and wet-period IRFs, the soil-moisture index s, and the input to convolution u(τ). Other
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outputs consist of a coefficient of efficiency E to measure the similarity between sim-
ulated and observed system response (residuals) and the hydrological memory of the
system. This system memory is the time that the response to an impulse effectively
persists, which is defined by the length of the IRF. Because the gamma function is
asymptotic and has infinite length, system memory is defined in RRAWFLOW as time5

tm on the IRF time scale at which 95 % of the curve area is in the range 0–tm.

2.7 Evaluating model fit and over-fitting

The calibration period is the period of the data record used to calibrate the model. By
default in RRAWFLOW, the conditional validation period is the part of the data record
following the calibration period that is used to test the model calibration against system-10

response observation data not used in calibration (i.e., model prediction of streamflow
or springflow). Assessing the conditional validation period is an indication of the ex-
pected model performance to predict a future period on the basis of climate simula-
tions, for example; this assessment also indicates if the model is being over-fit. This
validation is considered conditional because the model cannot yet be tested against15

additional observational data that will be available in the future (Beven and Young,
2013). RRAWFLOW calculates the Nash–Sutcliffe coefficient of efficiency (Nash and
Sutcliffe, 1970; Legates and McCabe, 1999) to quantify model fit. The coefficient of
efficiency E is defined as

E = 1−
[ ∑

(yobs − ysim)2∑
(yobs − ymean)2

]
, (13)20

where yobs and ysim are daily time series of the observed and simulated system re-
sponses, respectively, and ymean is the mean value of yobs. Conceptually, E is the ratio
of the magnitude of model residuals (numerator) to the overall variability in the obser-
vation record (denominator) subtracted from unity and theoretically can vary from −∞25

(poorest fit) to unity (perfect fit). An E value of zero indicates that the observed mean
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(ymean) is an equally good predictor as is the simulation (ysim) (Legates and McCabe,
1999). Because E compares the residuals to the overall response variability, E values
for different simulated sites can be directly compared; this would not be true if the mag-
nitude of the residuals alone is used in comparisons; e.g., as with the root mean square
error.5

In addition to quantifying model fit, the coefficient of efficiency provides a useful way
to evaluate possible over-fitting of the model. Although model fit for the calibration pe-
riod might improve as parameters are added, if the validation period indicates that this
added complexity is not helpful, the model has been over-fit (von Asmuth et al., 2002).
To test this condition, E is calculated for the calibration and conditional validation peri-10

ods separately (Ecal and Eval). For direct comparison of Ecal and Eval, the denominator
must be consistent for both cases, and therefore, the denominator is calculated on the
basis of the total period and the numerator on the basis of the shorter period of interest
(Long and Mahler, 2013). The denominator of Eq. (13) is scaled down to be consistent
with the time period of the numerator:15

E = 1−

[∑
(yobs − ysim)2

]
p[∑

(yobs − ymean)2
]

T

(
lp/lT

) ,

where the subscript p refers to the partial period, either calibration or conditional vali-
dation, the subscript T refers the total period, and l is the time length of the respective
period. This method is particularly important for comparison of two periods with differ-20

ent fluctuation amplitudes. For the total period, E is calculated by Eq. (13), which is
equivalent to using Eq. (14) because the partial and total periods are equal. Therefore
E , Ecal, and Eval all are directly comparable.

Generally, Ecal will be larger (better fit) than Eval, but a large difference indicates pos-
sible over-fitting, in which case a simpler model (i.e., fewer fitting parameters) should25

be tested. For example, if a double-gamma IRF is used, then a second model calibra-
tion with a single-gamma IRF could be tested to determine if greater similarity in the
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Eval and Ecal values is achieved. For nonparametric IRFs, a reduction in the number of
IRF control points could be tested. A time-variant IRF requires more parameters than
a time-invariant IRF, and this also can be tested. Thoroughly considering model com-
plexity in light of Eval and Ecal provides context for conditional validation. For example,
Long and Mahler (2013) described decision criteria to evaluate model complexity and5

the number of fitting parameters on the basis of Ecal and Eval, with several examples of
calibrated models.

Numerous other researchers have investigated issues related to model complex-
ity and its effect on model-prediction uncertainty (e.g., Jakeman and Hornberger,
1993; Arkesteijn and Pande, 2013; Pande et al., 2014). Prediction uncertainty cru-10

cially depends on model complexity (Arkesteijn and Pande, 2013). Although Vapnik–
Chervonenkis generalization theory suggests that models with higher complexity tend
to have higher prediction uncertainty, model complexity is not necessarily related to the
number of parameters (Fienen et al., 2010; Pande et al., 2014). Although a rigorous
assessment of prediction uncertainty is beyond the scope of this study, effective tools15

are available for this purpose (Doherty, 2005; Fienen et al., 2010).

3 Example model applications

The model was applied to two hydrological systems in the United States with responses
of springflow and groundwater level. Several examples with different RRAWFLOW op-
tions and different levels of parameterization are described, including examples of20

model over-fitting. Model input data consisting of daily precipitation and air temper-
ature and system-response observation data used for model evaluation are described
in Long and Mahler (2013) along with details describing the hydrogeology, physiogra-
phy, and climate of these sites. The precipitation records were separated into wet and
dry periods, which were defined as years in which the annual precipitation was either25

above or below the long-term mean, respectively.
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Model spin-up is the initial simulation period in which antecedent effects of the sys-
tem are not fully incorporated into the simulation, and therefore, model output for this
period is not valid. When the simulation is past the number of time steps equal to
the system memory, then the system antecedent effects are fully incorporated into the
model. Therefore, the model input record must start n time steps prior to the calibration5

period, where n is the system memory as a number of time steps. Because the system
memory is not known until the IRF is estimated, it is useful to start the simulation at the
earliest date for which input data are available. Estimated system-input values can be
used if observation data are not available for this antecedent-period requirement, and
a constant value equal to the long-term mean can be used if a better estimate is not10

available; in this case, the antecedent effects will be smoothed.
The parameter optimization software PEST (Doherty, 2005) was used for parameter

estimation. For optimization of nonparametric IRFs, the last control point was used
to set the system memory by assigning a fixed (non-optimized) value of zero to that
control point (Fig. 4). Posterior to this point, a series of control points fixed at zero was15

specified, resulting in a spline fit with a constant value of zero.

3.1 Springflow from Barton Springs

Barton Springs is a group of springs that flow from the Edwards aquifer, a carbon-
ate aquifer in south-central Texas that is contained mostly within the Edwards Group
(Lower Cretaceous geologic age). The collective flow from these springs was simulated20

in these examples. The springs respond to surface recharge to the Edwards aquifer
that occurs from multiple sinking streams that cross onto the aquifer’s recharge area
and precipitation recharge (Mahler et al., 2008). The example models described used
system-input option 1 (precipitation recharge, Table 1). Although recharge for Barton
Springs also includes sinking-stream recharge, option 1 provided an approximation25

of total recharge. Seven example models are presented for Barton Springs (Table 2).
These examples also serve to describe model settings for simulation of streamflow,
because the model settings for springflow and streamflow are identical. Generally, Ecal

5938

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5919/2014/gmdd-7-5919-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5919/2014/gmdd-7-5919-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5919–5963, 2014

RRAWFLOW

A. J. Long

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

is proportional to the number of optimized parameters for each example; however, high
Ecal values often result in low values of Eval, which might indicate over fitting (Table 2).
Therefore, the type of model applied and the number of parameters needed for the
selected model are important considerations. Table 3 shows parameters for single-
gamma and double-gamma IRFs for selected example models.5

Example N1 used TV option 1 (time-invariant IRF, Table 1) with a single-gamma IRF,
resulting in Ecal and Eval values of 0.84 and 0.63 (Table 2); as is common, Ecal is larger
than Eval because the validation period was not used in calibration.

Examples F5–F9 used TV option 2, in which time variance is applied as different IRFs
for wet and dry periods. Example F5 used single-gamma IRFs (Figs. 5 and 6), resulting10

in Ecal and Eval values of 0.88 and 0.72, respectively (Table 2), which represent an
improvement in model fit compared to example N1. Example F7 used double-gamma
IRFs (Fig. 7), resulting in Ecal and Eval values of 0.90 and 0.63, respectively (Table 2);
the added parameters for this example resulted in a higher Ecal value but a lower Eval
value than for example F5, indicating that example F5 is the better choice for hydrologic15

projections and that example F7 was over-fit. Example F8 used nonparametric IRFs
with a spline curve fit to 4 and 3 optimized (non-zero) control points for the wet and
dry periods, respectively (Fig. 8a; Ecal = 0.88, Eval = 0.72), which is the same model fit
as for example F5. Example F9 is the same as example F8, except with 8 optimized
control points for each of the two periods (Fig. 9), which resulted in a higher Ecal (0.92)20

but a much lower Eval (0.61) than for example F8, indicating an over-fit model. Of the
time-variant examples F5–F9, the two examples with the smallest number of optimized
parameters (F5 and F8) had the largest Eval values (Table 2).

Examples N2 and N3 used TV option 3, in which a time-variant IRF that changes
continually, with a single-gamma IRF and moving-average (MA) windows of 1 and25

10 years (Eq. 12), respectively. For these examples, Ecal and Eval values were equal
to or smaller than all other time-variant examples (Table 2). Increasing the MA window
from 1 to 10 years improved Ecal and Eval values; this, and the fact that the wet and dry
periods defined for examples F5–F9 generally are multi-year periods, indicates that the
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time-variant aspects of this system respond to general climatic changes over decadal
periods more so than annual.

PEST was used to calculate 95 % confidence intervals for the optimized parameters,
as described in Doherty (2005), which are shown graphically for example F8 (Fig. 8b).
Example F9, with a total of 16 control points, has 32 % wider parameter confidence5

intervals than does example F8, with 7 control points. Confidence intervals generally
widen with an increasing number of parameters because of a decrease in individual
parameter sensitivity.

Examples F5 and F8 are the two preferred models for Barton Springs and are nearly
identical in terms of Eval and the number of optimized parameters (Table 2). Choosing10

between these two models, therefore, might be a matter of modeler preference. Use of
the gamma function (example F5) has the advantage of being a common function. The
control-points method (example F8) has the advantage that confidence intervals for the
IRF can be easily shown in a graph (Figs. 8 and 9). Showing confidence intervals for
a gamma function also could be done but with additional steps involved, in which the15

gamma function would have to be calculated for all combinations of the 95 % parame-
ter confidence intervals. Then this family of curves would be plotted, and the maximum
upper and lower curve extents would show the confidence intervals for the IRF. A dis-
advantage of the control-points method is the need to select the temporal locations of
control points and also to set the system memory a priori by setting a zero-value control20

point at the end of the IRF. These settings generally require trial and error.

3.2 Groundwater level in well LA88C

Well LA88C, located in western South Dakota, is open to the Madison aquifer that is
composed of limestone and dolostone and is contained within the regionally exten-
sive Madison Limestone of Mississippian geologic age. This formation is exposed at25

the land surface on all flanks of the Black Hills of South Dakota and Wyoming and
dips radially outward in all directions below the land surface. Water level in the well re-
sponds to surface recharge to the Madison aquifer that occurs from direct precipitation
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and sinking streams that cross onto the aquifer’s recharge area (Carter et al., 2001).
The example models described used system-input option 1 (precipitation recharge,
Table 1).

Examples F10–F13 apply to well LA88C and used TV option 2 for time variance (Ta-
ble 1). As with Barton Springs, all Ecal values were larger than Eval (Table 2). Example5

F10 used double-gamma IRFs (Figs. 10 and 11; Ecal = 0.92, Eval = 0.73). Example F12
used nonparametric IRFs with spline curves fit to 10 and 8 optimized control points for
the wet and dry periods, respectively (Fig. 12; Ecal = 0.93, Eval = 0.70). In example F12,
the last two control points for the wet period and the last control point for the dry pe-
riod were optimized to zero, resulting in only 15 non-zero control points. Example F1310

used nonparametric IRFs with spline curves fit to 5 optimized control points for each
of the two periods (Fig. 13; Ecal = 0.88, Eval = 0.75), resulting in a higher Eval value
than for example F12, which indicates that the smaller number of control points is the
better choice in this case. Of the three examples for well LA88C, example F13 had
the fewest optimized IRF parameters and resulted in the largest Eval value (Table 2),15

indicating that example F13 is the clearly the best choice. Example F13 also resulted
in the smallest Ecal value of the three examples, which is not a disadvantage when the
primary objective is to conditionally validate the model. IRFs for example F13 approach
zero abruptly, resulting in negative values in the spline curve (Fig. 13); in these cases,
RRAWFLOW sets all negative values to zero.20

4 Discussion and conclusions

Additional functionality can be added to RRAWFLOW by the user and could possibly
be included in future versions. For example, additional methods to estimate paramet-
ric or nonparametric IRFs (e.g., the dispersion-model IRF) or the degree-day method
for estimating snowmelt (Rango and Martinec, 1995) could be added. If there were a25

need to include precipitation recharge and sinking-stream recharge simultaneously in
one system, this could easily be added. Revisions, additions, and corrections to the
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RRAWFLOW code can be sent to the author of this article for incorporation into subse-
quent official versions.

Comparison of the Nash coefficient of efficiency E (measure of model fit) for calibra-
tion (Ecal) and conditional validation (Eval) periods is useful for assessing over-fitting.
If Ecal is much larger than Eval, then the model may have been over-fit. Examples of5

model over-fitting (i.e., too many fitting parameters) include using a double-gamma IRF
when a single-gamma IRF is suitable, applying time-variant IRFs when time invariance
is adequate, or using more control points for a spline fit than necessary. Generally, the
objective should be to maximize Eval to achieve the best conditional validation pos-
sible, which frequently is at the expense of lowering Ecal. The selection of IRF type,10

number of control points, and time-variance options to maximize Eval can be done by
testing multiple options. Too many fitting parameters, as well as too few, can result in
low values of Eval.

The record length of the observed response should be considered in light of the
system memory: there is less confidence in the predictive strength of a model if the15

observed response is shorter than the system memory than if it is longer, because,
in the former case, the effects of the IRF tail are not fully tested against observation.
Ideally, the validation period alone should be longer than the system memory, and if it
is several times longer, then the full range of the IRF is tested several times over.

RRAWFLOW is suitable for hydrograph-separation methods to estimate stream base20

flow, as described by Jakeman and Hornberger (1993) and Long (2009). IRFs for
streamflow commonly have a slow-flow component with a much smaller peak response
and much longer tail than the quick-flow component, as in Fig. 3. For the simulated
hydrograph, RRAWFLOW can be used to compute the base-flow component by exe-
cuting the model without the quick-flow IRF. To estimate the base-flow component of25

the observed hydrograph, a graphical separation program can be used, such as PART
(Rutledge, 1998); however, because the different options and settings in PART (or sim-
ilar programs) result in different base-flow estimates, the RRAWFLOW estimated base
flow is helpful as guide to using PART (Long, 2009). For example, the PART settings
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can be adjusted so that the observed hydrograph separation has similar characteristics
to those of the simulated hydrograph separation.

Code availability

The RRAWFLOW program written in R language, RRAWFLOW manual, and an exam-
ple model are included in the Supplement to this article. The model included is example5

F5 for Barton Springs previously described (Table 2). It is not necessary to know the R
language to execute the model, but R must be installed on the user’s computer. The ex-
ample is set up to run on the Microsoft® Windows operating system but could be slightly
modified to run on a Linux operating system. No license is needed for RRAWFLOW.

The example model is set up for parameter optimization using the PEST soft-10

ware program (Doherty, 2005) for model calibration. All RRAWFLOW input and out-
put files are included along with PEST input, output, and executable files. The file
00_ReadMe.pdf in the Supplement contains instructions for executing RRAWFLOW
in the R environment and basic instructions for PEST exectution for this example. The
RRAWFLOW manual has detailed input and output instructions, and additional details15

for using PEST are in Doherty (2005). The Supplement can be used as a template for
a new modeling project by editing the input files accordingly. The R language program
and PEST can be downloaded at no cost from http://www.r-project.org/index.html and
http://www.pesthomepage.org/, respectively. Tables S1–S4 in the Supplement contain
model input values for all examples previously described.20

The Supplement related to this article is available online at
doi:10.5194/gmdd-7-5919-2014-supplement.
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Table 1. RRAWFLOW options.

System input

1 = System input is precipitation that results in recharge to the system (Eqs. 1–4).
2 = System input is recharge estimated outside of RRAWFLOW (skip Eqs. 1–4).
3 = System input is solute concentration (skip Eqs. 1–4).

System output

1 = System output is groundwater level.
2 = System output is springflow or streamflow.
3 = System output is solute concentration (System input = 3).

IRF type

1 = Parametric IRF – gamma functions.
2 = Nonparametric IRF – spline fit to IRF control points.
3 = Nonparametric IRF – linear fit to IRF control points.
4 = Nonparametric IRF – user-defined IRF.

Time variance (TV) in convolution

1 = Time-invariant (static) IRF.
2 = Wet-period IRF and dry-period IRF are defined separately, and each are time

invariant within these respective periods.
3 = Variable IRF vertical scale, where β in Eq. (11) is variable.

Air temperature

1 = Use air temperature adjustment (Eq. 2).
2 = Do not use air temperature adjustment.
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Table 2. Summary of example models. The rows in italic font indicate the best choices.

Time- No. of
variance Description of optimized

(TM) impulse-response IRF Time
Site Example Figure option function (IRF) parameters variant Ecal Eval Comments

Barton
Springs

N1 – 1 Single-gamma IRF
(static)

3 no 0.84 0.63 Poor Eval

F5 5 2 Single-gamma
IRFs

6 yes 0.88 0.72 Good Eval

F7 7 2 Double-gamma
IRFs

12 yes 0.90 0.63 Over fit

F8 8 2 7 optimized control
points

7 yes 0.88 0.72 Good Eval

F9 9 2 16 optimized
control points

16 yes 0.92 0.61 Over fit

N2 – 3 Single-gamma,
variable-scale IRF;
1-year window

4 yes 0.80 0.46 PoorEval

N3 – 3 Single-gamma,
variable-scale IRF;
10-year window

4 yes 0.84 0.61 PoorEval

Well
LA88C

F10 10 2 Double-gamma
IRFs

12 yes 0.92 0.73 –

F12 12 2 18 optimized
control points

18 yes 0.93 0.70 –

F13 13 2 10 optimized
control points

10 yes 0.88 0.75 Best Eval and smallest
number of parameters
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Table 3. Impulse-response function (IRF) parameters for selected example models.

Example F5 F7 F10

Site Barton Springs Barton Springs Well LA88C

IRF type Single-gamma IRFs Double-gamma IRFs Double-gamma IRFs

Dry period

λ1 2.15×10−4 5.26×10−4 5.15×10−3

η1 6.26×10−1 6.61×10−1 1.15×100

ε1 2.01×101 1.65×101 1.08×102

λ2 0 3.82×10−2 1.31×10−2

η2 0 5.10×101 6.36×100

ε2 0 4.98×100 1.42×102

Wet period

λ3 6.39×10−3 7.77×10−3 1.57×10−3

η3 1.14×100 1.22×100 1.16×100

ε3 1.09×101 1.11×101 2.50×102

λ4 0 9.53×10−2 1.89×10−2

η4 0 4.95×101 3.86×101

ε4 0 8.03×10−1 5.28×101
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response to an impulse of the input function u(τ) and is scaled by the magnitude of 
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Figure 1. Superposition of sequential impulse-response functions (IRFs). Each IRF is in re-
sponse to an impulse of the input function u(τ) and is scaled by the magnitude of that impulse.
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Figure 2. Gamma functions for different values of its two shape parameters.
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Figure 3. Superposition of two gamma functions to produce different impulse-response func-
tion (IRF) shapes. In some cases, this double-gamma IRF represents quick-flow and slow-flow
components.
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Figure 4. Impulse-response function defined by a spline curve fit through control points.
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Figure 5. Example F5: impulse-response function (IRF) for Barton 
Springs using a single-gamma IRF for both periods; i.e., wet and 
dry. Parameter values are shown in table 3.

Figure 5. Example F5: impulse-response function (IRF) for Barton Springs using a single-
gamma IRF for both periods; i.e., wet and dry. Parameter values are shown in Table 3.
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Figure 6. Example F5: observed and simulated springflow for Barton Springs.
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Figure 7. Example F7: impulse-response function (IRF) for Barton 
Springs using a double-gamma IRF for both periods; i.e., wet 
and dry. Parameter values are shown in table 2.

Figure 7. Example F7: impulse-response function (IRF) for Barton Springs using a double-
gamma IRF for both periods; i.e., wet and dry. Parameter values are shown in Table 3.
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Figure 9. Example F9: nonparametric impulse-response 
functions for Barton Springs using a total of 16 control points.Figure 9. Example F9: nonparametric impulse-response functions for Barton Springs using a

total of 16 control points.
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Figure 10. Example F10: impulse-response functions (IRFs) for 
well LA88C using double-gamma IRFs for both periods; i.e., wet 
and dry. Parameter values are shown in table 3.

Figure 10. Example F10: impulse-response functions (IRFs) for well LA88C using double-
gamma IRFs for both periods; i.e., wet and dry. Parameter values are shown in Table 3.
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Figure 11. Example F10: observed and simulated water level for well LA88C.

Figure 11. Example F10: observed and simulated water level for well LA88C.
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Figure 12. Example F12: nonparametric impulse-response 
functions for well LA88C using a total of 18 control points.Figure 12. Example F12: nonparametric impulse-response functions for well LA88C using a

total of 18 control points.
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Figure 13. Example F13: nonparametric impulse-response 
functions for well LA88C using a total of 10 control points.

Figure 13. Example F13: nonparametric impulse-response functions for well LA88C using a
total of 10 control points.
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